Modernising the Land Recors

6'th February 2014 Presented by Ratan Awasthi

CONTENT

01 Land as Resource

- 02 Ownership
- **03** Motivation?
- 04 Methodology
- 05 Conclusion

- Land is a collection of all naturally occurring resources whose supply is inherently fixed.
- Land is the most Important resource existing
- It is a major source of energy such as fossil fuel
- Food cultivation and agriculture would be impossible without land
- Land is also crucial for mineral resources

Various owners

- Railways
- CPWD
- Defense
- Ports
- Municipalities
- Power Gen companies

Indian Perspective

- 6.4 lacs village mapped in 19'th and 20'th Century
- 32.87 lakh Sq Km is the Land mass
- 21.6 Lakh Sq km is to be covered by NLRMP
- 43% of this land is in Plains
- 30% in Mountains
- And 27% in Plateus

Motivation

- Pedigreed Record of Rights
- Conclusive Land Titling
- Economic Activity
- RoR as Legal document
- Digital Cadastral Data Base
- Digital crop/land use data base

Global Trends in Land Parcel Management

Use of cutting edge technology "Hybrid"

- Use of Clearinghouses for information sharing over an SDI
- Sufficient amount of time to technology transfer and upgrade -5-7 year
- Demand for 3D visualization to better understand spatial information- City Level

Use of various online and offline tool to update information

The users of Land Information data

Objectives - " Modern Land Management system "

Essence of LIS

Land Information System

Any modern Land Information System is in place to ...

- minimize scope of land/property disputes,
- enhance transparency in the land records maintenance system,
- facilitate conclusive titles to immovable properties in the country

Spatial and Non-Spatial Data

- Ownership details
- Market Value
- Land Use
- Tax Value
- Legal Authority in-charge of the parcel
- Past Ownership details
- Encumbrance details
- > Demographic details for each parcel (No. of Persons/ Household, Gender ratio etc.)
- Socio-economic details (like Average Family Income, Employment etc.)

Geo-Spatial Data Generation - Process Flow

An Effective Land Information Management System

Data Ingestion

- CAD Files
- Scanned Cadastral Maps
- Field Measurement Books (FMB)
- Survey / Re-Survey using TS & DGPS
- Satellite/Aerial PhotographsTextual ROR data

Data Validation

- Linking of Spatial and Nonspatial Data
- Geometric Anomalies
- Edge Matching
- Fabric Adjustments

Data Dissemination

- Publish Over Web for citizen services
- Computerization of Registration.
- Single Portal for handling all updates (spatial/non-spatial)
- Analysis and reports for authorities

Central Land Information Database

Hexagon solution for a Land Information Management System

Data Ingestion

GeoMedia Desktop Suite©

- Erdas Imagine and LPS
- GeoMedia Pro
- GeoMedia Parcel Manager
- Leica TS and DGPS
- CORS and Field Data Collectors

Data Validation

GeoMedia Desktop Suite

- Erdas Imagine
- GeoMedia Pro
- GeoMedia Fusion

Data Dissemination

GeoMedia Server Suite©

- GeoMedia Smart Client
- GeoMedia Web Map

Central Land Information Database

Workflow for New Data creation

Bringing in Existing Data

From Data Capture to the Web Based Management

Workflow – Hexagon Approach

Field Data collection/FMB's

Hexagon Survey Software

Intergraph Cadaster tools

- Intergraph Parcel Manager is a leading edge solution for Parcel and Boundary maintenance
- Parcel Manager enables you to implement modern land management with the help of configurable and customizable functions and commands
- Specifically Tailored workflows for cadastral and property mapping industries
- Efficient data collection and maintenance of parcel boundaries and related land information using the workflows.

Workflows

Cadastral Map Digitization

Fabric Adjustments

Data from Field Measurement Book (FMB) (in-the-field or in-house)

FMB Data using Coordinate Geometry Input

CAD Data using Adjustments

Validating Areas

Labeling

Synchronizing Geometry

Web Based Editing and Delivery via Intergraph Smart Client

Matching the delivery of spatial functionality to users' abilities and business needs Desktop

Numbers of users able to make use of the tools

Workflow enabled Smart Clients

Integration of Intergraph software and Leica Geosystems CS25GNSS For Field Data Updates and Editing

34

GPS Reference Station Network for Land Cadaster

- A network of continuously operating GPS reference stations is more efficient than a traditional triangulation and traverse network.
- The stations can be set up at convenient locations in areas
- Network geometry is not as critical as with traditional networks, and the accuracy is higher and more consistent.
- □ Users set up their field receivers in the areas in which they are working, download reference station data via the Internet, and compute their positions.
- The stations can also transmit RTK and DGPS data for direct use by RTK and GIS field rover equipment.
- **Such a network can be of almost any size.** Whilst one or two stand-alone reference stations may be all that is required for a local area, town, municipality, opencast mine or engineering site, a multi-station network will usually be needed to provide full GPS service coverage for a state or **HEXAGON**

35 entire country or poration

Challenges

- Central Data Unification.
- Data Standardization.
- Various Projection System.
- Various Nomenclature.
- Low level of Technical penetration.

Benefit

- Introduction of Modern Accurate
 , Authorataive Actionable
 Cadaster Map making system
- Central Data Repository
- Updation of Old Map via
 Phtogrammetry+ Survey+
 Mapping technique

Thank You